Millimeter-wave precision spectroscopy of d-d transitions in potassium Rydberg states

HUAN BUI, CHARLES CONOVER, Colby College

— We measure two-photon millimeter-wave transitions between nd_\textit{j} and (n+1)d_\textit{j} Rydberg states for 30 \leq n \leq 35 in ^{39}\text{K} to an accuracy of 5 \times 10^{-8} to determine high-n d-state quantum defects and absolute energy levels. ^{39}\text{K} atoms are magneto-optically trapped and cooled to 2-3 mK, and excited from ground state 4s_{1/2} to nd_{3/2} or nd_{5/2} by frequency-stabilized 405 nm and 980 nm external-cavity diode lasers in succession. The magnetic-field insensitive nd_\textit{j} \rightarrow (n+1)d_\textit{j} \Delta m = 0 transitions are driven by a 16 \mu s-long pulse of mm-waves before the atoms are selectively ionized for detection. The (n+1)d population is measured as a function of mm-wave frequency. Static electric fields in the MOT are nulled in three dimensions to eliminate DC Stark shifts. The two-photon transitions exhibit small but measurable AC Stark shifts in the resonance frequencies. We determine the field-free intervals both by extrapolating a sequence of measurements made as a function of mm-wave power to zero and directly without extrapolation by applying Ramsey’s separated oscillating fields method. Our results give quantum defects for the high-n states that are an order of magnitude more accurate than earlier measurements of these quantities.

1This work was supported by Colby College.