Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

 H_2O^{++} Sequential dissociation of following double photoionization¹ Z. L. STREETER, C. W. MCCURDY, U. C. Davis and Lawrence Berkelev National Lab., R. L. LUCCHESE, Lawrence Berkelev National Lab., T. SEVERT, I. BEN-ITZHAK, Kansas State University — A recent analysis of momentum imaging experiments on the dissociation of the H_2O^{++} ion following one-photon double ionization [Phys. Rev. A 98, 053429 (2018)] elucidated the dynamics of direct three-body dissociation to $H^+ + H^+ + O$, but also suggested that in one ionization channel a sequential mechanism is involved. Analysis of the momentum imaging data in the native frames of reference associated with each break step confirms sequential dissociation dynamics. A previous study of three-body breakup of H_2O^{++} showed sequential dissociation of the 2^1A_1 state by $H_2O^{++}(2^1A_1) \rightarrow OH^+(1\Sigma^+) + H^+$ followed by spin-orbit coupling of the $1\Sigma^+$ and the ${}^{3}\Pi$ hydroxyl cation states leading to $OH^{+}({}^{3}\Pi) \rightarrow O({}^{3}P) + H^{+}$. Here we present a theoretical determination of the rovibrational populations of the $OH^+(1\Sigma^+)$ state from classical trajectories on the $H_2O^{++}(2^1A_1)$ surface. For two-body dissociation, the resulting internal energy distribution of the $OH^+(^{1}\Sigma^+)$ cation is binned quasiclassically. The resulting vibrational distribution and coupling to the dissociative $OH^+(^{3}\Pi)$ state allow comparison with the experimental native frames analysis.

¹U.S. DOE Office of Basic Energy Sciences, CSGB Division (DE-FG02-86ER13491 at KSU)

C McCurdy Lawrence Berkeley National Laboratory

Date submitted: 31 Jan 2019

Electronic form version 1.4