Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Photoassociation of Fermionic ⁸⁷Sr via the ¹S₀ - ¹P₁ Transition JOSHUA HILL, JAMES AMAN, THOMAS KILLIAN, Rice University — The fermionic isotope of strontium, ⁸⁷Sr, is of interest for the development of optical frequency standards and the study of quantum many-body phenomena. In many of these experiments, ⁸⁷Sr is confined in an optical lattice. Detecting the presence of doubly occupied lattice sites is a valuable tool for studies of atomic gases in optical lattices, and this is typically done with photoassociation, in which two gound-state atoms in a scattering state are photo-excited to a molecular state. No resonance frequencies have been reported for transitions to molecular states of any excited electronic potential for ⁸⁷Sr. Here we present results for photoassociation of ⁸⁷Sr atoms via the ¹S₀ - ¹P₁ transition at 461nm ($\Gamma = (2\pi*30.5)s^{-1}$), and measurements of optical lengths for select photoassociation spectra.

Joshua Hill Rice University

Date submitted: 01 Feb 2019 Electronic form version 1.4