Development of highly nondegenerate polarization entanglement on a waveguide SPDC source

KRISTINA MEIER, University of Illinois at Urbana-Champaign, FUMIHIRO KANEDA, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Japan, PAUL KWIAT, University of Illinois at Urbana-Champaign — As benchtop quantum information protocols become increasingly more advanced and the distances over which these experiments are performed become significantly longer, integrated optics provides a small, robust, and practical alternative to traditional bulk optics. Specifically, waveguide technology makes it possible to create bright single-photon sources for use on platforms where weight and stability requirements are limiting factors. For our goals, we are working on the characterization of a highly nondegenerate Spontaneous Parametric Down-Conversion waveguide source of polarization-entangled pairs on a PPKTP crystal. Our source uses type-II phase-matching to create collinear signal and idler photons at 1550 nm and 810 nm, respectively. Our past waveguide iterations have produced polarization-entangled pairs with a concurrence of 0.63 and a state purity of 0.72. To improve these numbers, we are experimenting with interleaved periodic poling, in contrast to consecutive poling, to reduce the amount of post-compensation required to achieve high polarization entanglement, as well as various mode filtering methods to reduce instabilities arising from the multiple pump spatial modes supported by the waveguide source.

This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a

Kristina Meier
University of Illinois at Urbana-Champaign

Date submitted: 01 Feb 2019 Electronic form version 1.4