Theoretical Studies of Dissociative Recombination of Electrons with \(\text{SH}^+ \) Ions

D. O. KASHINSKI\(^1\), J. T. BOHNEMANN, United States Military Academy, A. P. HICKMAN, Lehigh University, D. TALBI, Universityé Montpellier

We are investigating the dissociative recombination (DR) of electrons with the molecular ion \(\text{SH}^+ \), i.e. \(e^- + \text{SH}^+ \rightarrow S + H \). \(\text{SH}^+ \) is found in the interstellar medium (ISM), and its chemistry is still not fully understood. Understanding the role of DR of electrons with \(\text{SH}^+ \) will lead to more accurate astrophysical models. Recently we addressed the \(^2 \Pi \) potential energy curves (PECs) of \(\text{SH} \) as a DR pathway \(^3\). We are extending this work to investigate the ground and excited \(^4 \Pi \) PECs of \(\text{SH} \) as an alternate DR pathway. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain the PECs for several values of \(\text{SH} \) separation. Rydberg-valence coupling has proven to be important. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. The status of this ongoing work will be presented at the conference.

\(^1\)work supported by the French CNRS, the NSF, the XSEDE, and USMA

\(^2\)travel supported by DoD-HPCMP