Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Measurement of the radial matrix elements for the $6s^2S_{1/2} \rightarrow 7p^2P_J$ transitions in cesium¹ AMY DAMITZ, GEORGE TOH, Purdue University, ERIC PUTNEY, University of New Mexico, CAROL TANNER, University of Notre Dame, DANIEL ELLIOTT, Purdue University — We report measurements of the dipole matrix elements of the cesium $6s^2S_{1/2} \rightarrow 7p^2P_{1/2}$ and $6s^2S_{1/2} \rightarrow 7p^2P_{3/2}$ transitions. Each of these determinations is based on direct, precise comparisons of the absorption coefficients between two absorption lines. For the $\langle 7p^2P_{3/2}||r||6s^2S_{1/2} \rangle$ moment, we measure the ratio of the D₁ line has been determined with high precision previously by many groups. For the $\langle 7p^2P_{1/2}||r||6s^2S_{1/2} \rangle$ moment, we measure the ratio of the $\delta s^2S_{1/2} \rightarrow 7p^2P_{3/2}$ transition. These measurements have implications on cesium parity non-conservation theory.

¹We acknowledge support from the National Science Foundation under Grant Numbers PHY-1607603 and PHY-1460899.

Amy Damitz Purdue University

Date submitted: 01 Feb 2019

Electronic form version 1.4