Modeling carrier-envelope phase effects on frustrated tunnel ionization\(^1\) B.A. DEHARAK, J.P. ZIEGEL, V.C. VITERI-PFLUCKER, Illinois Wesleyan University, R.D. GLOVER, D. CHETTY, A.J. PALMER, I.V. LITVINYUK, R.T. SANG, Griffith University — The fact that an electron can tunnel out of the potential well of its parent atom or molecule in the presence of a strong laser field is the basis of a number of strong-field phenomena such as above threshold ionization, and nonsequential multiple ionization. In both of those cases the parent is left in an ionized state. However, there is a chance that after the electron has tunneled it will return to a bound state — a process known as frustrated tunnel ionization (FTI) [Nubbemeyer, T., et al. Phys. Rev. Lett. 101(23): 233001 (2008)]. Here we present calculations of few-cycle laser pulse FTI yield for argon as a function of carrier-envelope phase using the rescattering model [P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)] with the addition of a coulomb potential term when dealing with the “free” electron. We will contrast the use of different coulomb potentials and compare these calculations to some of our recently obtained experimental results.

\(^1\)This project is supported under the ARC Linkage Infrastructure, Equipment and Facilities scheme (project LE160100027). B.d. is funded by the US NSF (grants no. PHY-1402899 and PHY-1708108). D.C. is supported by an Australian Government RTP Scholarship.

Bruno deHarak
Illinois Wesleyan University

Date submitted: 01 Feb 2019

Electronic form version 1.4