Phasonic spectroscopy in a tunable quasicrystalline optical lattice

SHANKARI RAJAGOPAL, TOSHIHIKO SHIMASAKI, PETER DOTTI, RUWAN SENARATNE, DAVID WELD, University of California, Santa Barbara

— We describe studies of excitations in a tunable quantum quasicrystal realized using neutral strontium atoms in a bichromatic optical lattice. The phasonic degrees of freedom of solid-state quasicrystals are thought to have significant effects on thermal and electronic transport, yet are typically not dynamically accessible. Driving such a phason mode in a cold-atom context has revealed high-order multiphoton excitation processes, drawing a link to high-harmonic generation processes in solids. We study the dependence of these multiphoton processes on tunneling and modulation strength, and use the phasonic drive as a novel spectroscopic probe of the quasicrystal. Extensions to this work include realizing a phasonic Thouless pump, directly mapping out a slice of the Hofstadter butterfly spectrum, and studying effects of Anderson localization and mobility edges on interband transitions.

1The authors acknowledge support from ARO (MURI W911NF171032) and NSF (CAREER 1555313).
2Current affiliation: Rice University