Technical Progress Towards Measurement of the Anapole Moment of $^{137}\text{Ba}^{19}\text{F}$

SIDNEY CAHN, MAXIMILIAN BEYER, Yale Univ, JAI-MIN CHOI, Chonbuk National University, DAVID DEMILLE, Yale Univ — Nuclear spin-dependent parity violation (NSD-PV) effects are due to several interactions, including the nuclear anapole moment, a parity-violating electromagnetic moment confined to the interior of the nucleus. The supersonic beam source generated the proof-of-principle results for the $^{138}\text{Ba}^{19}\text{F}$ control molecule for the naturally abundant but spin-0 ^{138}Ba nucleus. We have improved the apparatus by incorporating a pulse-tube refrigerator to produce a bright buffer-gas source of $^{137}\text{Ba}^{19}\text{F}$ molecules at cryogenic temperatures, building an MTS-locked (modulation transfer spectroscopy) laser and PDH (Pound-Drever-Hall)-locked cavity for laser locking to address the largest systematic found in earlier work, and performing the laser spectroscopy of $^{137}\text{Ba}^{19}\text{F}$.

1Technical Progress Towards Measurement of the Anapole Moment of $^{137}\text{Ba}^{19}\text{F}$