Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Portable Yb Optical Lattice Clock: Towards Precision Measurement Outside the Lab¹ WESLEY BRAND², ROBERT FASANO³, RICHARD FOX, WILLIAM MCGREW⁴, YOUSSEF HASSAN⁵, XIAOGANG ZHANG, KYLE BELOY, DANIELE NICOLODI, ANDREW LUDLOW, NIST, Boulder — As optical atomic clocks continue to increase in precision, interest has grown in redefining the SI second based on an optical atomic transition. Before the second can be redefined, a wide range of optical clock comparisons must be made to rigorously test the realizable performance. Due to challenges in long-distance optical time and frequency transfer, these comparisons often require physically moving one optical clock near another. However, constructing a robust portable system is challenging for this complex experimental apparatus. Here, we report on experiments and design efforts for developing portable Yb optical lattice clocks with systematic uncertainty < 10^{-17} employing automatic systems for optical alignment and locking, despite a compact package of 1.5 m³. Additionally, we provide a brief update on recent developments and improvements on laboratory-based Yb optical lattice clocks at NIST.

¹NIST, NASA, DoD

²Also affiliated with University of Colorado Boulder

³Also affiliated with University of Colorado Boulder

⁴Also affiliated with University of Colorado Boulder

⁵Also affiliated with University of Colorado Boulder

Wesley Brand University of Colorado, Boulder

Date submitted: 01 Feb 2019

Electronic form version 1.4