Optical Spectroscopy of High-L Rydberg States of Calcium

ALINA GEARBA, JEFFERSON SESLER, DANIEL MCILHENNY, RANDY KNIZE, JERRY SELL, United States Air Force Academy, BRETT DEPAOLA, Kansas State University, STEPHEN LUNDEEN, Colorado State University — The Resonant Excitation Stark Ionization Spectroscopy (RESIS) technique has been used to measure the details of the binding energies of a non-penetrating high-L Rydberg electron bound to the Ca$^+$ ion. A sample of high-L Rydberg calcium atoms is formed by capture of a single electron from an $n = 9$ rubidium Rydberg target by a fast beam of Ca$^+$ ions. Individual fine-structure levels in the $n = 10$ manifold of Ca are selectively detected using Doppler-tuned CO$_2$ laser excitation to $n = 26$, followed by Stark ionization of the $n = 26$ products. The Stark ionization rate is proportional to the population of the individual L level which is selectively excited by the CO$_2$ laser and the positions of these lines are used to determine initial estimates of the dipole and quadrupole polarizabilities of the Ca$^+$ ion.

We acknowledge support of this work by the National Science Foundation.