Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Influence of magnetic non-adiabaticity on a solid-Ne-moderated positron beam energy distributions.¹ S. GHOSH, J. R. DANIELSON, C. M. SURKO, University of California, San Diego — High quality, trap-based positron beams typically operate in the regime in which particle transport is adiabatic. In this regime, the quantity $(\frac{E_{\perp}}{B})$ is a so-called adiabatic invariant (AI), where E_{\perp} is the energy in cyclotron motion in the direction perpendicular to magnetic field (B). Adiabaticity requires the parameter $\gamma = \frac{2\pi}{\omega_c} \frac{v_{||}}{|B|} \frac{d|B|}{dz}$ to be << 1, where ω_c is the cyclotron frequency and $v_{||}$ is the parallel positron velocity. For beam transport energies $\leq 30eV$, invariance holds quite well for our trap-based beam from the buffer gas trap (BGT) to the test-gas cell. However, for larger transport energies, breaking of AI is observed at both ends of the beam tube between solid-Ne moderator and BGT, due to low B and strong field gradients. This influences the parallel $(E_{||})$ and perpendicular energy (E_{\perp}) beam distributions, while keeping the total energy conserved. Experimental results for a fixed source magnetic field show increases in perpendicular energy (E_{\perp}) with increased moderator bias in the range 50 - 80V (i.e., where $\gamma \gtrsim 1$). Implications of this observation for BGT-based beam systems will be discussed.

¹Work supported by NSF grant PHY-1702230.

Soumen Ghosh University of California, San Diego

Date submitted: 01 Feb 2019

Electronic form version 1.4