Influence of magnetic non-adiabaticity on a solid-Ne-moderated positron beam energy distributions.1 S. GHOSH, J. R. DANIELSON, C. M. SURKO, University of California, San Diego — High quality, trap-based positron beams typically operate in the regime in which particle transport is adiabatic. In this regime, the quantity \(\frac{E_{\perp}}{B} \) is a so-called adiabatic invariant (AI), where \(E_{\perp} \) is the energy in cyclotron motion in the direction perpendicular to magnetic field \(B \). Adiabaticity requires the parameter \(\gamma = \frac{2\pi v_{||} d|B|}{\omega_{c} |B|} \) to be \(<< 1 \), where \(\omega_{c} \) is the cyclotron frequency and \(v_{||} \) is the parallel positron velocity. For beam transport energies \(\leq 30 \text{eV} \), invariance holds quite well for our trap-based beam from the buffer gas trap (BGT) to the test-gas cell. However, for larger transport energies, breaking of AI is observed at both ends of the beam tube between solid-Ne moderator and BGT, due to low \(B \) and strong field gradients. This influences the parallel \((E_{||}) \) and perpendicular energy \((E_{\perp}) \) beam distributions, while keeping the total energy conserved. Experimental results for a fixed source magnetic field show increases in perpendicular energy \((E_{\perp}) \) with increased moderator bias in the range 50 – 80V (i.e., where \(\gamma \gtrsim 1 \)). Implications of this observation for BGT-based beam systems will be discussed.

1Work supported by NSF grant PHY-1702230.

Soumen Ghosh
University of California, San Diego