Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Two-photon spectroscopy of the 2s3d ${}^{1}D_{2}$ level of neutral beryllium-9¹ ERYN COOK, LUCY LIN, ESTHER KERNS, CHELSEA PEREZ, WILL WILLIAMS, Smith College — We report on resonantly-enhanced two-photon spectroscopy in neutral beryllium-9. We monitor absorption on the 2s2p ${}^{1}P_{1} - 2s3d$ ${}^{1}D_{2}$ transition while probing the intermediate $2s^{2}$ ${}^{1}S_{0} - 2s2p$ ${}^{1}P_{1}$ transition in co- and counter-propagating geometries. Both lasers are stabilized to an ultra-low expansion cavity using a triple-frequency-modulation offset-sideband technique to allow calibrated dual-frequency scans. The measurement offers potential improved determination of the absolute frequencies of both the 2s2p ${}^{1}P_{1}$ and 2s3d ${}^{1}D_{2}$ states.

 $^1\mathrm{The}$ authors acknowledge support from NSF PHY-1428112 (MRI); PHY-1555232 (CAREER)

Eryn Cook Smith College

Date submitted: 01 Feb 2019

Electronic form version 1.4