Intense-Field Photoionization of Analogous Molecules by Focused Ultrafast Pulses

JOSHUA BECK, University of Nebraska - Lincoln, TIMOTHY SCARBOROUGH, The Ohio State University, COLLIN MCACY, CORNELIS UITERWAAL, University of Nebraska - Lincoln — The nature of a specific substituent in analogous molecules can dramatically affect their photodynamics. In previous work, we have shown that the dissociation rate for C-X bond breaking in the monohalobenzenes is strongly dependent of the value of X [Phys. Chem. Chem. Phys., 13, 13783 (2011)]. We report on the ionization and fragmentation of analogous molecules in the focus of 50-fs, 800-nm laser pulses. Ion mass spectra are recorded as a function of intensity in the absence of the focal volume effect [Phys. Rev. Lett. 100, 023002 (2008)]. Targets include carbon dioxide (CO$_2$), carbon disulfide (CS$_2$), and the substituted monoaromatics aniline (Ph-NH$_2$) and nitrobenzene (Ph-NO$_2$). We observe that the onset of ionization for CO$_2$ and CS$_2$ is dominated by parent ions. Ionization is insignificant for intensities that maximize alignment of CS$_2$, which validates ultrafast electron diffraction experiments from aligned CS$_2$ [Nature Comm. 6, 8172 (2015)]. We observe REMPI in aniline including M$^+$, M$^{2+}$, ... with suppressed fragmentation. We observe minor amounts of parent ions and a propensity of fragmentation for nitrobenzene [T. Scarborough (in press) Phys. Chem. Chem. Phys.]. Recent work at larger wavelengths will be discussed.

This material is based upon work supported by the National Science Foundation Grant Nos. PHY-0855675 and PHY-1005071, as well as the National Science Foundation EPSCoR RII Track-2 CA Award No. IIA-1430519 (Cooperative Nebraska-Kansas grant).

Joshua Beck
University of Nebraska - Lincoln

Date submitted: 01 Feb 2019
Electronic form version 1.4