Long-range interaction between Rydberg atoms and alkali-metal dimers

VANESSA OLAYA AGUDELO, FELIPE HERRERA, Department of Physics, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago, Chile., JESÚS PÉREZ-RíOS, Max Plank Institute, Berlin — Rydberg atoms have been proposed for non-destructive detection of cold molecules in beams and optical traps and also for sympathetic cooling of cold molecules to the ultracold regime. In order to assess the experimental feasibility of these applications, an accurate understanding of the long-range Rydberg-molecule interactions is needed. We obtain accurate C_5 and C_6 coefficients that characterize the long-range interaction between an alkali metal atom A with $n > 15$ \([A = \text{Cs}, \text{Rb}]\) and a heteronuclear alkali-metal dimer B in the electronic and vibrational ground state \([B = \text{LiCs}, \text{RbCs}, \text{LiRb with } J < 3]\). Possible applications for the photoassociation of alkali-metal trimers are discussed.

1F.H. is supported by PAI 79140030, FONDECYT Iniciacion 11140158, Proyectos Basal USA 1555-VRIDEI
2Millenium Institute for Research in Optics MIRO, Chile.