Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Long-range asymptotic behaviour of the exchange energy in the hydrogen molecule MICHAL SILKOWSKI, KRZYSZTOF PACHUCKI, University of Warsaw — The exchange energy is of fundamental importance for the understanding of interatomic interactions. Its long-range behavior in H_2 was investigated in the early days of quantum mechanics¹. Those results were met with criticism² and asymptotically correct form was derived by Herring and Flicker³. Despite further work by many authors^{4,5}, long-range asymptotics of exchange energy in H_2 still raises controversy.

We present high-precision variational calculations of energy splitting between the lowest hydrogen states performed with our H2SOLV⁶ package, which utilizes explicitly correlated exponential basis⁷. Due to correct asymptotic behavior of our basis, we claim that our numerical results resolve this controversy.

¹W. Heitler and F. London, Z. Physik **44**, 455 (1927)

²C. Herring, Rev. Mod. Phys. **34**, 631 (1962)

³C. Herring and M. Flicker, Phys. Rev. **134**, A362 (1964)

⁴K. T. Tang, J. Peter Toennies, and C. L. Yiu, J. Chem. Phys. **99**, 377 (1993)

⁵B. L. Burrows, A. Dalgarno, and M. Cohen, Phys. Rev. A 86, 052525 (2012)

⁶K. Pachucki, M. Zientkiewicz, V.A. Yerokhin, Comput. Phys. Commun. **208**, 162 (2016)

⁷K. Pachucki, Phys. Rev. A 88, 022507 (2013)

Michal Silkowski University of Warsaw

Date submitted: 03 Mar 2019

Electronic form version 1.4