DAMOP20-2019-000017

Abstract for an Invited Paper for the DAMOP20 Meeting of the American Physical Society

Predicting and Controlling the Electronic, Spin and Lattice Degrees of Freedom of Artificial Atoms in Solids¹ PRINEHA NARANG, Harvard University

Recent work has focused on identifying new defect qubits in 3D and 2D materials with quantum optoelectronic properties that reach beyond the limitations of the well-known nitrogen-vacancy (NV-) center in diamond. Group IV-vacancy centers in diamond have been of particular interest due to their symmetry-protected optical transitions and long-lived spin degree of freedom. In the first part of my talk I will discuss the ground- and excited-state properties of group IV centers in their negative and neutral charge state with a focus on the dynamic and product Jahn-Teller (pJT) effects, including their impact on zero phonon line energetics, spin-orbit coupling and lattice dynamics. From first principles, I will show how we capture the interplay of spin-orbit and electron-phonon coupling in order to accurately describe the pJT-affected excited state manifold, going beyond a perturbative description. In the second part of my talk I will present our recent work on color centers in low dimensional materials in particular the impact of localized strain and strong-spin orbit coupling. I will conclude with discussing schemes for selective control of optically active qubits of differing excitation energies towards creating components for quantum networks.

¹Acknowledge support from the STC Center for Integrated Quantum Materials (CIQM) NSF grant number DMR-1231319 and from the Army Research Office MURI(Ab-Initio Solid-State Quantum Materials) grant number W911NF-18-1-0431.