Abstract Submitted for the DAMOP20 Meeting of The American Physical Society

Single vs. double electron emission following the beta decay of $He-6^1$ AARON BONDY, EVA SCHULHOFF, GORDON DRAKE, Univ of Windsor — When a helium atom containing a ⁶He halo nucleus undergoes beta decay, the two atomic electrons become redistributed over all possible states of the daughter ⁶Li nucleus, including single- and double-electron emission (shake-off). The present study focuses on the probability for double electron emission to form Li^{3+} , where there is a substantial disagreement between theory [1] and experiment [2]. We use pseudospectral representations together with Stieltjes imaging to separate the $Li^{3+} + 2e^-$ channel from the energetically overlapping $Li^{2+} + e^-$ single ionization channel. We find that the formation of Li^{3+} is strongly suppressed near threshold relative to Li^{2+} , thereby accounting for part of the disagreement with experiment. However, there still remains a substantial disagreement in the total probability. [1] E. E. Schulhoff and G. W. F. Drake, Phys. Rev. A **92**, R050701 (2015). [2] R. Hong et al., Phys. Rev. A **96**, 053411 (2017).

¹*NSERC and SHARCnet are gratefully acknowledged

Aaron Bondy Univ of Windsor

Date submitted: 29 Jan 2020

Electronic form version 1.4