DAMOP20-2020-000627

Abstract for an Invited Paper for the DAMOP20 Meeting of the American Physical Society

Molecular Lattice Clocks in the Optical Domain¹

MATEUSZ BORKOWSKI, Nicolaus Copernicus University, Torun, Poland

Weakly bound molecules promise unparalleled sensitivity to temporal variations of the proton-to-electron mass ratio² and in searches for new interactions beyond the Standard Model³. Both applications, however, rely on measurements of vibrational state positions of yet unrealized accuracy. To mitigate this, we propose to observe clock ¹S₀-³P₀ transitions in weakly bound bosonic ¹⁷⁴Yb₂ molecules⁴ facilitated by applying an external magnetic field⁵. We predict the positions of molecular clock lines using photoassociation spectroscopy data for the ground state ⁶, and ab initio long range parameters⁷ and the recently measured ¹⁷⁴Yb ¹S₀-³P₀ scattering length⁸ for clock state vibrational energies. The necessary ground state Yb₂ molecules could be efficiently produced by STIRAP. Thanks to favorable Franck-Condon factors the magnetically induced molecular Rabi frequencies can be comparable to the atomic Rabi frequencies under same laser intensities and magnetic fields. Using new ab initio potentials⁹ we also evaluate the sensitivity of the excited clock states to changes in the proton-to-electron mass ratio.

¹Supported by Polish National Science Center Grant 2017/25/B/ST4/01486

²Zelevinsky T, Kotochigova S, Ye J, Phys. Rev. Lett. 100 043201 (2008)

³Borkowski M, Buchachenko AA, Ciuryo R, Julienne PS, Yamada H, Kikuchi Y, Takasu Y, Takahashi Y 2018 Sci. Rep. 9, 14807 (2019)

⁴Borkowski M, Phys. Rev. Lett. 120 083202 (2018)

⁵Taichenachev AV, et al. Phys. Rev. Lett. 96 083001 (2006)

⁶Borkowski M, Buchachenko AA, Ciuryo R, Julienne PS, Yamada H, Kikuchi Y, Takahashi K, Takasu Y, and Takahashi Y Phys. Rev. A 96 063405 (2017)

⁷Porsev SG, Safronova MS, Derevianko A, and Clark CW Phys. Rev. A 89 012711 (2014)

⁸Franchi L, et al. New J. Phys. 19 103037 (2017)

⁹P. Tecmer, et al., Int. J. Quant. Chem. 119, e25983 (2019)