Abstract Submitted for the DAMOP20 Meeting of The American Physical Society

Theoretical Studies of Dissociative Recombination of Electrons with SH⁺ Ions¹ D. O. KASHINSKI², US Military Academy, A. P. HICKMAN, Lehigh University, J. ZS. MEZEI, ATOMKI, I. F. SCHNEIDER, Université du Havre, D. TALBI, Université Montpellier — We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH^+ , i.e. $e^- + SH^+ \rightarrow S + H$. SH⁺ is found in the interstellar medium, and understanding its loss through DR will lead to more accurate astrophysical models. Recently we addressed the ${}^{2}\Pi$ potential energy curves (PECs) of SH as a DR pathway³. We have extended this work to investigate alternate DR pathways. Early results suggest that direct-mechanism DR through a ${}^{4}\Pi$ pathway may resolve the low-energy (< $10 \,\mathrm{meV}$) discrepancy between experimentally determined rate coefficients and those determined through the indirect mechanism DR ² II pathway. PECs are obtained by performing large active space multi-reference configuration interaction (MRCI) electronic structure calculations for several values of SH separation. Rydberg-valence coupling has proven to be important. The block diagonalization method is used to disentangle interacting states forming a diabatic representation of the PECs. The status of this ongoing work will be presented at the conference.

³Kashinski *et al.*, J. Chem. Phys. **146**, 204109 (2017)

David Kashinski US Military Academy

Date submitted: 31 Jan 2020 Electronic form version 1.4

¹work supported by the French CNRS, the NSF, the XSEDE, and USMA ²travel supported by DoD-HPCMP