DAMOP20-2020-000676

Abstract for an Invited Paper for the DAMOP20 Meeting of the American Physical Society

Technologies for Portable Optical Clocks ROBERT MCCONNELL, MIT Lincoln Lab

Optical clocks are among the most accurate measurement devices ever built, now surpassing the 10^{-18} level of precision. Yet these impressive devices still typically occupy the volume of an entire atomic physics lab, being constrained in size by numerous free-space optics required to direct control lasers to the atomic reference sample as well as the bulk-cavity stabilization system required to narrow the interrogation lasers linewidth to the requisite level. Many applications in navigation and communications could benefit from smaller-size, fieldable optical clocks which can still achieve high performance. In this talk, I will discuss two technologies we are developing at Lincoln Laboratory aimed at enabling compact, high-performance optical clocks based on trapped ions. First, I will discuss progress towards chip-based ion array traps able to deliver all necessary ion control wavelengths via on-chip photonics and incorporating on-chip avalanche photodiodes (APDs) for ion state readout . Secondly, I will discuss our recent demonstration of a fiber stimulated-Brillouin-scattering (SBS) laser used to run an optical ⁸⁸Sr⁺ ion clock, achieving short-term stability of $3.9 \times 10^{-14}/\sqrt{\tau}$ via a clock self-comparison measurement.