Abstract Submitted for the DAMOP20 Meeting of The American Physical Society

Experimental Study of the $4^3\Sigma_g^+$ and $3^3\Pi_g$ States of Rubidium Dimer¹ PHILLIP ARNDT, Temple University, VLADIMIR SOVKOV, St. Petersburg State University, REBECCA LIVINGSTON, BRENDAN ROWE, MAR-JATTA LYYRA, ERGIN AHMED, Temple University — We reports a highresolution experimental study and a numerical analysis of the $4^3\Sigma_{\rm g}^+$ and $3^3\Pi_{\rm g}$ electronic states of rubidium dimer. In the experiment the Rb₂ molecules were initially excited from the ground $X^1\Sigma_g^+$ state to an intermediate level of the mixed $A^1\Sigma_u^{+}$ $b^3\Pi_u$ manifold using a narrow band tunable TiSa laser. In the next step the probe laser, a narrow band dye laser tunable in the 13000-14000cm⁻¹ range, excited the molecules further to the target states. The resonances of the probe laser were observed by detecting the total fluorescence from the excited states to the $a^3\Sigma_{\mu}^+$ state in the 500nm range. Large number of ro-vibrational term values spanning a wide range of the rotational and vibrational quantum numbers were measured using the optical-optical double resonance technique. Besides the term values, we observed the resolved fluorescence intensities with Condon structures from many of the levels. The Rydberg-Klein-Rees (RKR) potential energy curves were constructed and optimized to reproduce the experimental data reliably.

¹This work was supported by the National Science Foundation grant NSF PHY 1912269

Ergin Ahmed Temple Univ

Date submitted: 31 Jan 2020 Electronic form version 1.4