Abstract Submitted
for the DAMOP20 Meeting of
The American Physical Society

Time Delays from One-Photon Transitions in the Continuum

LUCA ARGENTI, University of Central Florida, JACO FUCHS, ETH Zürich, NICOLAS DOUGUET, Kennesaw University, STEFAN DONSA, Vienna University of Technology, FERNANDO MARTÍN, Autonomous University of Madrid, JOACHIM BURGDÖRFER, Vienna University of Technology, LAURA CATTA-NEO, URSULA KELLER, ETH Zürich — Photoemission time delays reveal information about the potential landscape an electron probes upon ionization. Here, we quantify the dependence of the time delay on the angular momentum of the electrons liberated by ionization of the helium atom, analyzing the energy and angularly-resolved electron distribution within a two-color attosecond pump-probe scheme. These measurements allow us to disentangle the relative phase of all quantum pathways contributing to the photoelectron signal. In particular, we retrieve the dependence on the angular momentum of the Bremsstrahlung delay, which is an essential contribution to the ionization delay observed in all attosecond pump-probe measurements. We observe a continuum-continuum transition delay between outgoing s- and d-electrons as large as 12 as close to the ionization threshold. Both single-active-electron and full \textit{ab initio} simulations confirm this observation for helium and hydrogen, suggesting that these delays are universal.

1NSF Grants No. PHY-1607588 and PHY- 1912507

Luca Argenti
University of Central Florida

Date submitted: 31 Jan 2020
Electronic form version 1.4