Abstract Submitted for the DAMOP20 Meeting of The American Physical Society

Enhanced sensitivity to ultralight bosonic dark matter in the spectra of SrOH¹ IVAN KOZYRYEV, Columbia University, ZACK LASNER, JOHN DOYLE, Harvard University — The rich spectra of polyatomic molecules offer the possibility of enhanced sensitivity to variations in fundamental constants such as the proton-to-electron mass ratio, μ , arising from coupling between Standard Model particles and theoretically well-motivated ultralight dark matter (UDM) candidates. Recent extension of direct laser cooling techniques to a few linear triatomic metal hydroxide radicals has potential to enable long measurement coherence times and high spectroscopic precision. We show that in SrOH, a near-degeneracy between rotational states in the X(200) and $X(03^{1}0)$ vibrational manifolds of different character leads to $10^3 \times$ enhanced sensitivity to μ : a time-dependent change $\delta \mu$ in μ would lead to a change $\delta\nu$ in the resonance frequency ν according to $\delta\nu/\nu \ 10^3\delta\mu/\mu$. We propose to use laser cooling and trapping of SrOH molecules and an experimental approach to enable measurements of $\delta \mu / \mu$ with as low as 10^{-17} fractional uncertainty [1]. A preliminary investigation of potential systematic errors will be discussed as well as possible implications for UDM searches. [1] Kozyryev et al., arXiv:1805.08185

¹AFOSR Grant No. FA9550-15-1-044 and NSF Grant No. PHY-150596

Zack Lasner Harvard University

Date submitted: 31 Jan 2020

Electronic form version 1.4