Spatial stability and the onset of absolute instability of Batchelor vortex for high swirl numbers

LUIS PARRAS, RAMON FERNANDEZ-FERIA, University of Malaga (Spain) — Batchelor’s vortex has been commonly used in the past as a model for aircraft trailing vortices. Using a temporal stability analysis, Fabre and Jacquin [J. Fluid Mech. 500, 239 (2004)] have recently found new viscous unstable modes for the high swirl numbers of interest in actual large-aircraft vortices. We look here for these unstable viscous modes occurring at large swirl numbers \((q > 1.5)\), and large Reynolds numbers \((Re > 10^3)\), using a spatial stability analysis, thus characterizing the frequencies at which these modes become convectively unstable for different values of \(q\), of \(Re\), and for different intensities of the uniform axial flow. We consider both jet-like and wake-like Batchelor’s vortices, and are able to reach values of \(Re\) as high as \(10^8\). We also characterize the onset of absolute instability of these unstable viscous modes for large \(q\).

\(1\)Supported by the European Project FP6-012238

Ramon Fernandez-Feria
University of Malaga

Date submitted: 28 Jul 2005

Electronic form version 1.4