Forces exerted by a flowing foam: viscous, elastic and plastic behaviours

FRANCOIS GRANER, BENJAMIN DOLLET, Laboratoire de Spectrometrie Physique, 140 rue de la Physique, BP 87, 38402 Martin d’Heres Cedex

We have built a 1 m long, 10 cm wide foam channel, in which we produce 2D foam flows in the range 0.05 - 50 mm/s. In the middle of the channel, we place an obstacle: circle, square, cogwheel, ellipse or airfoil. We perform measurements of the drag, lift and torque exerted by the flowing foam on the obstacle. We observe both a dissipative contribution characteristic of a liquid, and a yielding behaviour typical of a solid. We simultaneously image the foam. In each region of the flow, we measure locally the pressure field, as well as the velocity field, as for a liquid, but also elastic deformation and plastic rearrangements. We discuss how to link the local and global descriptions, and how beyond a few bubble diameters the foam behaves as a continuous material. However, its triple viscous, elastic, plastic behaviour is complex, and most features we observe are not yet explained by current models.

Francois Graner
Laboratoire de Spectrometrie Physique, 140 rue de la Physique
BP 87, 38402 Martin d’Heres Cedex

Date submitted: 04 Aug 2005

Electronic form version 1.4