Reaction patterns in a blinking vortex flow

CAROLYN NUGENT, MATT PAOLETTI, TOM SOLOMON, Bucknell University — We study the patterns formed by the excitable Belousov-Zhabotinsky reaction in a blinking vortex flow produced by magnetohydrodynamic forcing. Mixing in this flow is chaotic, as has been documented extensively in previous studies. The reaction is triggered by a silver wire, and the result is a pulse (“trigger wave”) that propagates through the system. We investigate the patterns formed by the propagating pulse and compare them with theories\(^3\) that predict fractal patterns determined by the unstable manifolds of the flow. We also consider “burn-like” reaction fronts, and compare the results with previous experiments for patterns of oscillatory reactions in this flow.

\(^1\)Supported by NSF Grants DMR-0404961 and REU-0097424.
\(^2\)Current address: Department of Physics, University of Maryland