Surface drag in a fluidized bed1 DANIEL GOLDMAN, WYATT KORFF, University of California, Berkeley — Animal locomotion on sand involves drag at the sand surface for a range of substrate conditions. Inspired by this, we study drag of a half-submerged 2 cm disk using a large aspect ratio (1200x800 particle diameters) air fluidized bed of 250\textmu m glass beads to control the properties of the granular material. We vary the air flow rate Q to the bed and the drag velocity v_d (0-40 cm/sec) of the disk. Below fluidization, the drag force F_d increases linearly with v_d, with nonzero intercept; the intercept decreases as fluidization onset is approached. Above onset, F_d is no longer linear in velocity, but has positive curvature. For large enough v_d, we observe the formation of a wake behind the disk. We find a sharp onset in drag associated with this wake after removing the viscous drag, similar to studies of wave drag in a viscous Newtonian fluid2. The existence of an onset to wake formation resulting in rapid increase in drag in fluids at a critical velocity is a result of the competition between surface tension and gravitational restoring force; in the fluidized cohesionless grains it is not clear what mimics the effect of the attractive force.

1Research supported by the Intelligence Community Postdoctoral Research Fellowship Program

2T. Burghelea and V. Steinberg, Phys. Rev. Lett. 86, 2557, (2001)