Puff-like Structures Captured in DNS of the Turbulent Poiseuille Flow at Low Reynolds Numbers1 TAKAHIRO TSUKAHARA, Dept. Mech. Eng., Tokyo University of Science, KAORU IWAMOTO, HIROSHI KAWAMURA, Dept. Mech. Eng., Tokyo University of Science, DAISUKE TOCHIO, Dept. HTTR Project, Japan Atomic Energy Research Institute — Direct numerical simulation (DNS) of a fully developed turbulent channel flow for very low Reynolds numbers has been executed with larger computational box-sizes than those of common DNS. The present Reynolds number is decreased down to $Re_{τ}=64$, where $Re_{τ}$ is based on the friction velocity and the channel half width $δ$. For lower Reynolds numbers of $Re_{τ} \leq 80$ with the largest box of $51.2δ \times 2δ \times 22.5δ$, the periodic weak-turbulence regions are observed. This type of locally disordered flow is similar to a turbulent puff observed in a transitional pipe flow. The equilibrium puff-like structures observed in the channel flow incline against the streamwise direction. The propagation velocity of the puff-like structure is approximately equal to the bulk mean velocity. The significant effects of the captured puff-like structures exist upon the turbulence statistics, such as a mean velocity and turbulence intensities.

1The present study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan.