Rayleigh Instability in Supersonic Compression Ramp Flow
KEVIN CASSEL, DANNY BOCKENFELD, Illinois Institute of Technology — The supersonic flow past a compression ramp with ramp angle of $O(Re^{-1/4})$ is governed by the supersonic triple-deck formulation. For scaled ramp angles $\alpha \geq 3.9$ Cassel, Ruban & Walker (1995)\(^1\) have found that the triple-deck flow is unstable to long-wave Rayleigh (LWR) modes, which have wavelengths shorter than the $O(Re^{-3/8})$ streamwise length scale of the triple-deck region, but larger than the $O(Re^{-5/8})$ vertical extent of the lower deck. The LWR instability is manifest in the unsteady triple-deck calculations as an absolute instability in the form of a wave packet. In the present investigation, the possible presence of a Rayleigh instability is investigated in the supersonic compression ramp flow. Rayleigh modes, which are of the same order as the $O(Re^{-5/8})$ viscous lower deck, are not admitted in the triple-deck formulation due to the additional physics that is required in the $O(Re^{-5/8}) \times O(Re^{-5/8})$ Rayleigh region. However, the Rayleigh instability has a faster growth rate than the LWR instability and would be expected to dominate in solutions of the full Navier-Stokes equations for the compression ramp flow. The stability problem consists of solving the triple-deck formulation for the base flow and the Rayleigh equation for the perturbations to this base flow. Results for ramp angles up to $\alpha = 5.5$ show that for all cases that are unstable to LWR modes, i.e. that contain inflectional velocity profiles, the flow is also unstable to Rayleigh modes.

Kevin Cassel
Illinois Institute of Technology

Date submitted: 12 Aug 2005
Electronic form version 1.4