Measurements of Instantaneous Wall Shear Stresses and Near-wall Structures Using Digital Holographic Microscopy¹

J. SHENG, E. MALKIEL, J. KATZ, Johns Hopkins University — Flow measurements are conducted near the wall of a square channel at Re_h=60,000 using Digital Holographic Microscopy. Instantaneous 3D velocity distributions are obtained over a volume of 1.5 x 2.5 x 1.5 mm³, corresponding to x⁺=50, y⁺=83, z⁺=50, y being the wall normal direction. The (pixel) displacement resolution is 0.7 µm in the streamwise and spanwise directions and 10 µm in the wall-normal directions. Using PIV guided particle tracking, each reconstructed hologram provides 2000 – 6000 vectors. The distributions of 2 µm particles are not uniform, and they tend to cluster in layers at 2<y⁺<5, and at 20<y⁺<50. Local distributions of wall shear stresses are computed directly from the instantaneous velocity gradients in the viscous sub-layer (0<y⁺<5). Preliminary analyses reveal clear correlations between the distribution of local wall-shear stresses and the presence of streamwise flow structures in the buffer layer (5<y⁺<50). Current on-going analysis examines the effects of these buffer-layer structures, the local 3-D vorticity distribution and alignment of the strain tensor eigenvectors on the distribution of wall-shear stresses.

¹Sponsored by ONR and NSF

Joseph Katz
Johns Hopkins University

Date submitted: 12 Aug 2005