Liquid trampolines: droplets and spheres bouncing off soap films
LAURENT COURBIN, HOWARD STONE, Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA, JEROME DUBAIL, GAUTIER ROUX, Ecole Polytechnique, 91128 Palaiseau Cedex, France, SUZIE CROTIERE, Laboratoire de Physique Statistique, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris, France, DAVID QUERE, Laboratoire de Physique de la Matiere Condensee, College de France, 75005 Paris, France, CAMBRIDGE TEAM, PARIS TEAM — We report on the impact of rigid spheres and liquid droplets on soap films. These systems exhibit a rich variety of dynamics including bouncing and adhesion. In the case of drop impact, at low speeds the drops bounce, while for intermediate speeds the drops can pass through the film without the film breaking. The bouncing can be analyzed using mechanical models. In the case of the impact of rigid spheres, by tuning the physical property of the surface of the impacting sphere, which may or may not be surrounded by a skin of oil, we experimentally observe two distinct regimes: the solid sphere can bounce off of the fluid film or get entrapped. In all cases the film can be considered an absorber of kinetic energy. Finally, the possibility of tuning the bounce of an object will be presented.