Incompressible Richtmyer-Meshkov Scaling D.L. COTRELL, A.W. COOK, Lawrence Livermore National Laboratory — We consider the Richtmyer-Meshkov instability of incompressible fluids and show that using appropriate time and length scales, one can get fairly good collapse of growth rate curves for a wide range of initial density disturbances. Thus, given good collapse of the growth rate curves one can get a fairly accurate curve fit and then back out a universal model for the mixing layer thickness.