DFD06-2006-000139

Abstract for an Invited Paper for the DFD06 Meeting of the American Physical Society

The use of global modes to understand transition and perform flow control DAN HENNINGSON, Mechanics KTH Sweden

The stability of highly non-parallel flows are considered using superposition of global modes. When purturbed by the worst case initial condition these flows often exhibits a large transient growth associated with the development of wavepackets. The global modes of the systems also provides a good starting point for the design of reduced order models used to control the growing disturbances. As the main example, the control of a globally unstable boundary-layer flow along a cavity is considered. The disturbance development is associated with the development of a wavepacket along the cavity shear layer followed by a global cycle related to the two unstable global modes. Direct numerical simulations of this flow are coupled to a measurement feedback controller, which senses the wall shear stress at the downstream lip of the cavity and provides the actuation at the upstream lip. A reduced order model for the control is obtained by a projection on the least stable global eigenmodes. The LQG controller is run in parallel to the Navier-Stokes time integration and it is shown to damp out the global oscillations.