Laminar-Turbulent Transition: A Hysteresis Curve of Two Critical Reynolds Numbers in Pipe Flow HIDESADA KANDA, University of Aizu

— A laminar-turbulent transition model (DFD 2004) has been constructed for pipe flows: (1) Natural transition occurs in the entrance region, and (2) Entrance shape determines a critical Reynolds number R_c. To verify the model, we have carried out experiments similar to Reynolds’s color-dye experiment with 5 bellmouth entrances and a straight pipe. Then, we observed the following: (i) two different types of R_c exist, R_{c1} from laminar to turbulent and R_{c2} from turbulent to laminar, and (ii) the ratio of bellmouth diameter B_D to pipe diameter D affects the values of R_{c1} and R_{c2}. For each entrance, R_{c1} has a maximum value $R_{c1}(\text{max})$ and R_{c2} has a minimum value $R_{c2}(\text{min})$. When overlapping the two curves of $R_{c1}(\text{max})$ and $R_{c2}(\text{min})$ against B_D/D, a hysteresis curve is confirmed. All R_c values exist inside this hysteresis curve. Consequently, R_c takes a minimum value $R_{c}(\text{min})$ of approximately 2000 when B_D/D is at a minimum, i.e., at $B_D/D = 1$, $R_{c}(\text{min}) = R_{c1}(\text{max}) = R_{c2}(\text{min}) = 2000$. Regarding Reynolds’s R_c of 12,830, we observed $R_{c1}(\text{max})$ of approximately 13,000 at B_D/D above 1.54. Therefore, the model has been partly verified.

Hidesada Kanda
University of Aizu

Date submitted: 26 Jul 2006