Linear Stability and Growth of Disturbances in Weakly-Rarefied Pulsatile Flows
FRANCESCO FEDELE, NASA Goddard Space Flight Center,
DARREN HITT, School of Engineering, University of Vermont — In this work we
examine the response of pulsatile pipe flows to axisymmetric perturbations under
weakly-rarefied flow conditions (slip regime) roughly defined by Knudsen numbers
$Kn \leq 0.1$. Such perturbations can arise, for example, due to surface roughnesses
on the solid boundaries. An Orr-Sommerfeld equation is derived and solved by
means of a Galerkin projection onto the approximate functional space spanned by
a finite set of eigenfunctions derived in the longwave limit of the Orr-Sommerfeld
operator. For first-order slip boundary conditions, the results from Floquet stability
analyses show that pulsatile slip flow is slightly more stable than the steady slip-flow
for longwave disturbance; further, the stability characteristics are found to be only
weakly-dependent on the Knudsen number. The flow structures corresponding to
the largest energy growth are toroidal vortex tubes that are transported diffusively
and convectively by the mean flow. The transient energy growth is found to slightly
increase with the Knudsen number, indicating that the Orr-Sommerfeld operator for
slip flow is more non-normal when compared to continuum-based no-slip flows. The
impact of higher-order slip conditions at $O(Kn^2)$ will also be discussed.

Darren Hitt
School of Engineering, University of Vermont

Date submitted: 03 Aug 2006