Abstract Submitted for the DFD06 Meeting of The American Physical Society

Representation of Two-Point Velocity Correlations in Terms of Structure Tensors¹ A. BHATTACHARYA, U. GODSE, R.D. MOSER, S. KASSINOS — A general representation of the homogeneous, anisotropic twopoint second-order correlation of turbulent velocity fluctuation of the form $R_{ij} = \langle u'_i(\mathbf{x})\mathbf{u}'_j(\mathbf{x}+\mathbf{r})\rangle = \Sigma_{\mathbf{n}}\mathbf{f}^{(\mathbf{n})}(\mathbf{r})\mathbf{T}^{(\mathbf{n})}_{ij}$ is constructed, where 12 basis tensors $T^{(n)}_{ij}$ are expressed in terms of the separation vector \mathbf{r} and structure tensors introduced by Kassinos and Reynolds (1995). The structure tensors are one-point correlations of the derivatives of fluctuating streamfunctions and are given by componentality b_{ij} , dimensionality y_{ij} and stropholysis Q_{ijk} . These tensors are shown to contain information about the anisotropy of R_{ij} (thus motivating such a representation). Using continuity and an additional constraint, only four scalar functions $f^{(n)}$ are shown to remain linearly independent. A comparison of the representation with two-point correlation data from DNS of channel flow turbulence is made in order to assess the suitability of this representation.

¹Support from NSF and AFOSR is gratefully acknowledged.

R.D. Moser Mech Engg, Univ Texas Austin

Date submitted: 06 Aug 2006

Electronic form version 1.4