The effect of large coherent rings on small-scale turbulence
LU-MINITA DANAILA, CORIA, U. Rouen, PAUL DIMOTAKIS, California Institute of Technology, K.-F. KRAWCZYNISKI, BRUNO RENOU, CORIA, U. Rouen —
In an experimental partially stirred reactor (PaSR), fluid is injected through a set of 16 pairs of opposed jets and ejected via porous top and bottom walls. The resulting fluid circulation pattern creates pairs of alternately-rotating, large-scale coherent rings. The large-scale properties of the mean flow, i.e., the large-scale vorticity and strain rate, lead to rotating, quasi-2D turbulence at large scales, about 128 Kolmogorov scales in size. In these large structures, turbulence is locally homogeneous and the vorticity field is spatially correlated over a range of scales as large as the rings. This flow configuration is novel, since the vorticity field is usually classified as a small-scale field. The inertial range of second-order structure functions of enstrophy scales as log(r), where, r is the separation between two spatial points, as is the case for 2D turbulence. An analytical approach is developed to statistically describe the enstrophy over the whole range of scales.

Paul Dimotakis
California Institute of Technology

Date submitted: 07 Aug 2006