Hydrodynamic loading on microcantilever in liquid near a solid surface

SEONGHWAN KIM, KENNETH D. KIHM, The University of Tennessee — Recently, Green and Sader [J. Appl. Phys. 98, 114913 (2005)] developed a theory predicting frequency responses of a microcantilever immersed in a fluid near a solid surface. This article presents an experimental investigation of the hydrodynamic loading effects on the frequency responses of microcantilever in liquid near a solid surface. Liquid viscosity and density are controlled by temperature change and the gap height between cantilever and a solid surface is controlled by piezoelectric actuator in atomic force microscope. It is found that the enhanced dissipative effect due to liquid viscosity near a solid surface is primarily source of hydrodynamic loading on vibrating microcantilever in liquid. The results show the physics of viscous dissipation in the micro-scale surrounding fluid and will be of value to microcantilever sensor communities.

1This work was partly supported by the U.S. Department of Energy, Office of Basic Energy Science under Contract No. DE-FG02-05ER46182 and partly by the Research Initiation Grant from the University of Tennessee.

2Graduate Research Assistant

3Magnavox Endowed Chair Professor

Seonghwan Kim
The University of Tennessee

Date submitted: 07 Aug 2006

Electronic form version 1.4