Abstract Submitted for the DFD07 Meeting of The American Physical Society

Scaling properties of coating flows in rectangular channels AL-BERTO DE LOZAR, ANDREW HAZEL, ANNE JUEL, University of Manchester — We present an experimental and numerical study of the aspect- ratio dependence of two-phase displacement flows in channels of rectangular cross-section. In square and near-square channels, the bulk features of the flow appear to be virtually independent of aspect ratio, α , so that the capillary number, Ca, is the only governing parameter. Saffman-Taylor fingering, governed by the modified capillary number, $1/B \propto Ca \alpha^2$, is observed for $\alpha > 7$. For channels of intermediate aspect ratio, the interfacial flow depends solely on a generalised modified capillary number consistent with both limits, $\widehat{Ca} = f(Ca, \alpha)$, above a threshold value \widehat{Ca}_t . This novel scaling has tremendous practical significance since it implies that the bulk features of any two-phase displacement flow can be inferred from those of the square channel for $\widehat{Ca} > \widehat{Ca}_t$.

> Alberto de Lozar University of Manchester

Date submitted: 25 Jul 2007

Electronic form version 1.4