Self-Assembly of Droplets in a Nematic Liquid Crystal

CHUN-FENG ZHOU, PENGTAO YUE, JAMES J. FENG, University of British Columbia

— In recent experiments, micro-particles and droplets were observed to self-assemble into specific patterns when they were dispersed in a nematic liquid crystal. We use a diffuse-interface method to simulate one such system. Five types of pairwise interactions are found in this study: dipolar attraction, dipolar repulsion, anti-dipolar repulsion, parallel dipolar repulsion and anti-parallel dipolar attraction. These results are consistent with prior results in the literature. In particular, the dipolar attraction force obeys the $-4^{th}$ power law reported earlier. Furthermore, multiple droplets self-assemble into a long chain similar to experimental observations.

Chunfeng Zhou
University of British Columbia

Date submitted: 31 Jul 2007