Abstract Submitted for the DFD07 Meeting of The American Physical Society

Jamming in Hopper Flow¹ SEPEHR SADIGHPOUR, Duke University, PAUL MORT, Proctor & Gamble, R.P. BEHRINGER, Duke University — It known that the flow rate, \dot{m} , of sand from a hopper is independent of the amount of material in the hopper due to stress screening. This is the basis for the Beverloo equation which relates \dot{m} to an effective fluidized region near the outlet. We use the screening idea to characterize the probability of jamming for flow from a hopper. We focus on the probability $P_s(t) = 1 - P_i(t)$ that flow has continued without a jam, a 'survival' probability. Screening suggests that in time dt, the jamming probability is $dP_i = dt/T$, where T is a constant characteristic time. Simple analysis gives $P_s(t) = \exp(-t/T)$ where t is the time since the start of flow. We can also write $P_s(M) = \exp[-M/(mT)]$, where M is the mass that has flowed out. We have carried out experiments in a quasi-2D hopper to test this idea. Our sand grains are photoelastic disks confined between two Plexiglas sheets. We obtain two types of data, first, data for $s_{l}(t)$ and second, photoelastic images showing the force structures within the hopper during flow. We find that P_s is well described by an exponential. Ongoing work seeks to relate T to the properties of the material near the outlet.

¹work supported by IFPRI

Robert Behringer Duke University

Date submitted: 01 Aug 2007

Electronic form version 1.4