Mechanism of drag reduction on a three-dimensional model vehicle using a passive control device

WOOK YI, WOONG SAGONG, HAECHEON CHOI, Seoul National University — It has been well known that the boat-tail device reduces drag on a three-dimensional vehicle. However, its detailed mechanism is not clearly known yet. To understand this mechanism, we conduct an experiment for flow over a three-dimensional model vehicle in ground proximity. We consider various lengths ($l/H = 0.1 \sim 0.5$) and slant angles ($\theta = 0^\circ \sim 40^\circ$) of the boat tail, and conduct velocity measurements near the boat tail and oil visualizations on the boat-tail surface. We find that the slant angle is an important parameter for drag reduction. The maximum drag reduction occurs at $\theta = 12.5^\circ, 15^\circ$ and 15° for $l/H = 0.1, 0.3$ and 0.5, respectively, and the amounts of maximum drag reduction are 20, 41 and 45%. For the case of $l/H = 0.3$, separation starts to occur from $\theta = 6^\circ$ at the leading edge of the boat tail. This separated flow reattaches on the boat-tail surface and forms a small secondary separation bubble, which provides strong near-wall momentum and delays main separation down to the trailing edge of boat tail. The size of secondary separation bubble increases with increasing θ. At $\theta > 16^\circ$, main separation occurs at the leading edge of boat tail, and drag increases from the minimum value and reaches that of no control at large θ's.

1Supported by the National Research Laboratory Program, MOST

Haecheon Choi
Seoul National University

Date submitted: 02 Aug 2007

Electronic form version 1.4