Dewetting of a fluid between parallel plane surface with non-
constant forcing PAROUSIA ROCKSTROH1, Harvey Mudd College, THOMAS
WARD2, University of California - Los Angeles — We examine the effect of applying
a nonconstant force to the radial squeezing and de-wetting of a thin film of viscous
Newtonian fluid between parallel plane walls. We explore the problem theoretically
for gap spacings much smaller than the typical capillary length for air-liquid systems
\(< \text{O}(1) \text{ mm})\). In our model, we parameterize force using a single variable F which
is proportional to a constant force F_0 and the height of the gap spacing h to some in-
teger power $n \in \mathbb{Z}^+$. Since there is no known analytic solution for $n > 0$, we analyze
the solution of the dewetting problem numerically. Analysis reveals the formation of
a singularity, leading to capillary adhesion, as the gap spacing approaches a critical
value that depends on F_0, n and a variable C that is analogous to a spring constant.

1Department of Mathematics
2Department of Mathematics

Thomas Ward
University of California - Los Angeles

Date submitted: 03 Aug 2007

Electronic form version 1.4