Abstract Submitted for the DFD07 Meeting of The American Physical Society

Gravity driven effect in flowing particle laden thin films¹ ROBERT GLIDDEN², UCLA, CHRISTOPHER FOX³, Harvey Mudd College, THOMAS WARD, ANDREA BERTOZZI, UCLA — The flow characteristics of an anisopycnic particle-laden thin film flowing down an inclined plane is analyzed experimentally near the maximum packing limit for polydisperse hard spheres. The multiphase fluid is a mixture of silicone oil and polydisperse heavy glass beads of varying viscosities and bead diameter, respectively. For the high volume concentrations studied, $50\% < \phi < 56\%$, we observe that the elapsed time, t, versus average front position, x_N , still scales with the Huppert solution where $C_N = x_N^3/t$ is a constant [Nature 300(2), 1982]. For very high background fluid viscosities, the particle settling velocity is very slow with respect to the fluid and C_N decreases with increasing concentration. As the background fluid viscosity is decreased C_N remains relatively constant as the particle density approaches the maximum. We propose that the latter effect may be the result of a transition from viscous fluid flow to that of a lubricated sliding solid body. Experiments are performed to test an empirical correlation for the data in this parameter regime based on this hypothesis.

¹work supported by NSF RTG and VIGRE ²Department of Mechanical and Aerospace Engineering ³Department of Mathematics

> Thomas Ward University of California - Los Angeles

Date submitted: 02 Aug 2007

Electronic form version 1.4