Abstract Submitted for the DFD07 Meeting of The American Physical Society

Absolute instability of hot round jets discharging from tubes W. COENEN, U Carlos III Madrid, A. SEVILLA, U Jaen, A.L. SANCHEZ, U Carlos III Madrid — The spatiotemporal, inviscid linear instability of hot gas jets emerging from a round tube of radius a is studied for jet Reynolds numbers $Re \gg 1$. The analysis focuses on the influence of the injector length l_t on the stability characteristics of the resulting jet, whose base velocity profile at the exit is computed in terms of the dimensionless tube length $L_t = l_t/(Re a)$ by integrating the boundary-layer equations along the injector. Both axisymmetric modes (m = 0) and first azimuthal modes (m = 1) of instability are investigated for values of the jet-to-ambient density ratio $S = \rho_i / \rho_{\infty} < 1$. For short tubes $L_t \ll 1$ the jet becomes absolutely unstable for critical density ratios $S_c \simeq (0.66, 0.35)$ for m = (0, 1), in agreement with previous results of uniform velocity jets. For increasing L_t both modes are seen to exhibit absolutely unstable regions for all values of L_t and small enough values of the density ratio. For m = 1 we find a critical density ratio which increases monotonically with L_t , reaching its maximum value $S_c \simeq 0.5$ as the exit velocity approaches the parabolic profile for $L_t \gg 1$. In the case m = 0 the critical density ratio achieves a maximum value $S_c \simeq 0.9$ for $L_t \simeq 0.04$ and then decreases to approach $S_c = 0.7$ for $L_t \gg 1$. The absolute growth rates in this limiting case are however extremely small, in agreement with the fact that the parabolic velocity profile is neutrally stable to axisymmetric disturbances.

> Francisco Rodriguez University of California, San Diego

Date submitted: 03 Aug 2007

Electronic form version 1.4