Stratified turbulence: a possible interpretation of some geophysical turbulence measurements

JAMES RILEY, University of Washington, ERIK LINDBORG, KTH Stockholm — For stably-stratified regions of both the atmosphere and the oceans, several existing sets of smaller-scale data, with horizontal length scales ranging from the Ozmidov scale \(\ell_o = \sqrt{\epsilon/N^3} \) to several hundred times \(\ell_o \), appear to display Kolmogorov-Obukov-Corrsin inertial ranges in horizontal spectra. For both the atmospheric and oceanic data, this corresponds to horizontal length scales of roughly 1 to at least several hundred meters. Based upon results from numerical simulations\(^1\)\(^3\) and theoretical arguments\(^1\)\(^2\) it is argued that these data are inconsistent with the assumptions for these inertial range theories. Instead, it is hypothesized that the dynamics of stratified turbulence\(^4\) explain these data. In stratified turbulence a strong downscale transfer of energy exists in the horizontal, and with this the development of a horizontal (but not vertical) spectral inertial range above \(\ell_o \). This downscale transfer of energy can then lead to smaller-scale instabilities and turbulence, providing new ‘pathways’ to turbulence in geophysical flows.

James Riley
University of Washington

Date submitted: 04 Aug 2007

Electronic form version 1.4