Collective dynamics in suspensions bounded by two planar walls via a new accelerated Stokesian-dynamics algorithm

JERZY BLAWZDZIEWICZ, Yale University, ELIGIUSZ WAJNRYB, IPPT PAN, Warsaw, Poland — Our novel accelerated Stokesian-dynamics algorithm for a system of spherical particles bounded by two parallel planar walls serves to efficiently follow the dynamics of about 10^3 particles. Its high efficiency is due to simplifications associated with the far-field asymptotics of the scattered flow produced by the particles. By a proper choice of basis Stokes flows (which in the near field tend to Lamb solutions and in the far field to multipolar basis of Hele-Shaw flows), the problem is reduced to a sparse linear system that is solved at a low numerical cost using iterative sparse-matrix manipulation techniques. We also present applications of our algorithm to study suspension transport in microfluidic channels and collective motion of large regular particle arrays in Poiseuille flow.

1Work supported by NSF CAREER grant CTS-0348175.