Impact of a large-viscosity liquid drop: Rim dynamics

ROBERT D. SCHROLL, University of Chicago, CHRISTOPHE JOSSERAND, STÉPHANE ZALESKI, CNRS/Université P. & M. Curie, WENDY W. ZHANG, University of Chicago — Recent experiments suggest that whether the rim of the liquid sheet ejected after impact remains stable against azimuthal perturbations is crucial for splash formation in large-viscosity liquids. Without air, the rim of the ejected sheet remains smooth. With sufficiently high air pressure, azimuthal undulations develop on the rim and slowly grow into a splash [Xu, PRE 75, 056316 (2007)]. Motivated by these observations, we simulate large-viscosity liquid impact and focus on the rim dynamics when air effects are small. We found that, surprisingly, the height of the rim increases at a nearly constant rate, independent of whether the impacting drop is expanding or contracting. This decoupling of the rim growth dynamics from the overall radial deformation appears because the large-viscosity drop evolves towards a flat pancake shape. The pancake thickness is controlled by liquid viscosity and, once formed, remains constant over the duration of the impact. Thus the rim always grows from a sheet of the same thickness. We have in addition compared these results against existing scaling predictions, measurements as well as results from different numerical implements and found good agreement throughout.

Wendy W. Zhang
University of Chicago

Date submitted: 03 Aug 2007