A Convectively Filtered Regularization of Multi-Dimensional Burgers Equation

GREGORY NORGARD, KAMRAN MOHSENI, University of Colorado, Boulder — Multi-dimensional Burgers equation, \(u_t + u \cdot \nabla u = \nu \Delta u \), can be considered as a simplified model of fluid dynamics. By sharing the convective nonlinear terms, it exhibits characteristics similar to those in the Euler and Navier-Stokes equations, particularly shocks and turbulence. Shocks and turbulence can both be attributed to the accumulation of energy in the high frequency wave modes, caused by the nonlinear term \(u \cdot \nabla u \). Typically this energy cascade is halted by introducing viscosity, balancing the nonlinearity with dissipation. An alternative solution is replacing the convective velocity with a low pass filtered velocity, \(\bar{u} \). The filtering reduces the energy in the higher wave modes, reducing the rate of the energy cascade. This method has been shown to regularize shocks in one-dimensional inviscid Burgers, \(u_t + uu_x = 0 \). This research extends this result into multiple dimensions with the equation, \(u_t + \bar{u} \cdot \nabla u = 0 \). The existence and uniqueness of a continuously differentiable solution is proven for a general class of filters. This regularization is then compared and contrasted with viscous Burgers in areas such as constants of motion, energy decay, shock thickness, and spectral energy decompositions.

Kamran Mohseni
University of Colorado, Boulder

Date submitted: 03 Aug 2007